

 [image: _images/logo_full2.png]

Welcome to mooq

[image: https://img.shields.io/pypi/v/mooq.svg]
 [https://pypi.python.org/pypi/mooq][image: https://img.shields.io/pypi/l/mooq.svg]
 [https://pypi.python.org/pypi/mooq][image: https://img.shields.io/pypi/pyversions/mooq.svg]
 [https://pypi.python.org/pypi/mooq][image: https://img.shields.io/pypi/status/mooq.svg]
 [https://pypi.python.org/pypi/mooq][image: https://img.shields.io/pypi/implementation/mooq.svg]
 [https://pypi.python.org/pypi/mooq]Latest Version: v 0.1.1

mooq [https://github.com/jeremyarr/mooq] is an asyncio compatible library for interacting with a RabbitMQ [https://www.rabbitmq.com] AMQP broker.

Features

	Uses asyncio. No more callback hell.

	Simplified and pythonic API to RabbitMQ

	Built on top of the proven pika [https://github.com/pika/pika] library

	Comes with an in memory broker for unit testing projects that depend on RabbitMQ

Get It Now

$ pip install mooq

Just mooq it

Creating a connection:

conn = await mooq.connect(
 host="localhost",
 port=5672,
 broker="rabbit")

Creating a channel of the connection:

chan = await conn.create_channel()

Registering a producer:

await chan.register_producer(
 exchange_name="log",
 exchange_type="direct")

Registering a consumer and associated callback:

async def yell_it(resp):
 print(resp['msg'].upper())

await chan.register_consumer(
 exchange_name="log",
 exchange_type="direct",
 routing_keys=["greetings","goodbyes"],
 callback = yell_it)

Publishing a message:

await chan.publish(exchange_name="log",
 msg="Hello World!",
 routing_key="greetings")

Process messages asynchronously, running associated callbacks:

loop = asyncio.get_event_loop()
loop.create_task(conn.process_events())

User Guide

Contents:

	Installation
	Get it now

	Installing RabbitMQ

	Tutorial
	Introducing “in2com”

	hello.py

	loud.py

	Running

	Next Steps

	Examples
	Direct

	API
	Connect to a Broker

	RabbitMQ Transport

	In Memory Transport

	Custom Exceptions

	Changelog
	0.1.0 (2017-07-18)

	0.1.1 (2017-07-19)

	License

	Authors
	Leads

	Contributors

	Kudos

Indices and tables

	Index

	Module Index

	Search Page

Installation

Get it now

$ pip install mooq

Installing RabbitMQ

Follow the installation guides here [http://www.rabbitmq.com/download.html] for installing RabbitMQ on your particular operating system.

For linux users, since RabbitMQ is quite popular, check your distribution’s package repository as there may already be a package available for download and easy install.

Tutorial

mooq is really useful for creating asyncio based microservices that talk to eachother. So let’s create an app that does just that.

	Introducing “in2com”

	hello.py

	loud.py

	Running

	Next Steps

Introducing “in2com”

With a real intercom, a person presses a button and says something. On the other end, connected by a long wire, is a speaker that receives the audio and amplifies it.

Our very own in2com app consists of two microservices:

	hello.py for publishing greetings at random intervals

	loud.py for receiving the greetings and logging them in uppercase

Before starting, make sure you have installed rabbitMQ and mooq on your machine. See Installation

hello.py

We are going to schedule three coroutines for our hello.py microservice:

	publish_randomly(): for sending “hello world!” to a RabbitMQ broker at random intervals of between 1 and 10 seconds.

	tick_every_second(): for regularly printing a “tick” to the console, similar to an intercom having a blinking green LED to let us know it is on

	main(): the entry point for running the microservice. It sets up the connection to the RabbitMQ broker and schedules the tick_every_second() and publish_randomly() coroutines.

The main() coroutine looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	import mooq
import asyncio
import random

async def main():
 conn = await mooq.connect(
 host="localhost",
 port=5672,
 broker="rabbit")

 chan = await conn.create_channel()

 await chan.register_producer(
 exchange_name="in2com_log",
 exchange_type="direct")

 loop.create_task(tick_every_second())
 loop.create_task(publish_randomly(chan))

Before we can publish messages to the broker, we first need to connect to it using the mooq.connect() function. mooq will raise an exception if it cannot connect to the broker.

Once we have a connection, we can create a channel using the create_channel() method of the conn object.

Channels enable many different producers and consumers to multiplex one connection to RabbitMQ. This is helpful because establishing a connection is generally an expensive operation. When using mooq, you should only have one producer or consumer per channel.

Once we have a channel, we can register a producer with the broker using the register_producer() method of the chan object. This tells the broker to register a direct exchange called “in2com_log” if isn’t already registered. Publishing to a “direct” exchange ensures a message goes to the queues whose routing key exactly matches the routing key of the message. Exchanges in mooq can be either “direct”, “topic” or “fanout”.

The last two lines of main() schedule the other coroutines to run.

The publish_randomly() coroutine looks like this:

	1
2
3
4
5
6
7
8
9

	async def publish_randomly(chan):
 while True:
 await chan.publish(
 exchange_name="in2com_log",
 msg="Hello World!",
 routing_key="greetings")

 print("published!")
 await asyncio.sleep(random.randint(1,10))

In mooq messages are published at the channel level and messages are consumed at the connection level. We’ve found this fits in best with asyncio apps. Invoking chan.publish() sends a “Hello World!” message with a routing key of “greetings” to the “in2com_log” exchange. Messages must be json serialisable.

If we tried to publish to an exchange that isn’t registered with the broker, an exception would’ve been raised.

The tick_every_second() coroutine is self explanatory:

	1
2
3
4
5
6

	async def tick_every_second():
 cnt = 0
 while True:
 print("tick hello {}".format(cnt))
 cnt = cnt + 1
 await asyncio.sleep(1)

Finally, to run the microservice from the command line, we add statements to get the event loop, schedule the main coroutine and then run the event loop:

loop = asyncio.get_event_loop()
loop.create_task(main())
loop.run_forever()

Final hello.py source:

import mooq
import asyncio
import random

async def main():
 conn = await mooq.connect(
 host="localhost",
 port=5672,
 broker="rabbit")

 chan = await conn.create_channel()

 await chan.register_producer(
 exchange_name="in2com_log",
 exchange_type="direct")

 loop.create_task(tick_every_second())
 loop.create_task(publish_randomly(chan))

async def tick_every_second():
 cnt = 0
 while True:
 print("tick hello {}".format(cnt))
 cnt = cnt + 1
 await asyncio.sleep(1)

async def publish_randomly(chan):
 while True:
 await chan.publish(
 exchange_name="in2com_log",
 msg="Hello World!",
 routing_key="greetings")

 print("published!")
 await asyncio.sleep(random.randint(1,10))

loop = asyncio.get_event_loop()
loop.create_task(main())
loop.run_forever()

loud.py

We are going to schedule three coroutines for our loud.py microservice:

	main(): the entry point for running the microservice. It sets up the connection to the RabbitMQ broker and schedules coroutines.

	process_events(): for scheduling coroutines to run on receiving messages

	tick_every_second(): for regularly printing a “tick” to the console, similar to an intercom having a blinking green LED to let us know it is on

The main() coroutine looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	import mooq
import asyncio

#the callback to run
async def yell_it(resp):
 print(resp['msg'].upper())

async def main(loop):
 conn = await mooq.connect(
 host="localhost",
 port=5672,
 broker="rabbit")

 chan = await conn.create_channel()

 await chan.register_consumer(
 exchange_name="in2com_log",
 exchange_type="direct",
 routing_keys=["greetings","goodbyes"],
 callback = yell_it)

 loop.create_task(tick_every_second())
 loop.create_task(conn.process_events())

As per hello.py, we connect to the broker and create a channel to use. Next we register a consumer on the channel. As per register_producer(), register_consumer() tells the broker to register a direct exchange called “in2com_log” if isn’t already registered.

The routing_keys argument is a list of routing keys that we want to match against. If a message is published to the “in2com_log” exchange with either the “greetings” or “goodbyes” routing keys, then the broker will send the message to our channel. If a message were to be published with any other routing key, the channel not receive the message.

We instruct mooq to run the callback yell_it() when a message is received. In mooq, callbacks are always coroutines with one argument - a response dictionary. This enables apps to be purely based in the asyncio world. The response dictionary for each callback contains the message sent as well as metadata such as the routing key it was sent with.

As per hello.py, we schedule the tick_every_second() coroutine to run.

Lastly, we schedule a task to run conn.process_events() that listens for all messages being sent to all channels of the connection and runs the required callbacks. It bears repeating that in mooq, messages are published at the channel level and messages are consumed at the connection level.

conn.process_events() should always run as a seperate task and not awaited for, as it is designed to run until explicitly stopped.

Finally, as per hello.py, to run the microservice from the command line, we add statements to get the event loop, schedule the main coroutine and then run the event loop:

loop = asyncio.get_event_loop()
loop.create_task(main(loop))
loop.run_forever()

Final loud.py source:

import mooq
import asyncio

#the callback to run
async def yell_it(resp):
 print(resp['msg'].upper())

async def main(loop):
 conn = await mooq.connect(
 host="localhost",
 port=5672,
 broker="rabbit")

 chan = await conn.create_channel()

 await chan.register_consumer(
 exchange_name="in2com_log",
 exchange_type="direct",
 routing_keys=["greetings","goodbyes"],
 callback = yell_it)

 loop.create_task(tick_every_second())
 loop.create_task(conn.process_events())

async def tick_every_second():
 cnt = 0
 while True:
 print("tick loud {}".format(cnt))
 cnt = cnt + 1
 await asyncio.sleep(1)

loop = asyncio.get_event_loop()
loop.create_task(main(loop))
loop.run_forever()

Running

Open up two tabs in your favourite terminal program.

Terminal 1:

$ python hello.py

tick hello 0
published!
tick hello 1
tick hello 2
published!
tick hello 3
tick hello 4
tick hello 5
published!
tick hello 6

Terminal 2:

$ python loud.py

tick loud 0
HELLO WORLD!
tick loud 1
tick loud 2
HELLO WORLD!
tick loud 3
tick loud 4
tick loud 5
HELLO WORLD!
tick loud 6

Next Steps

	Check out some more Examples

	Familiarise yourself with the API

	Let us know any issues [https://github.com/jeremyarr/mooq/issues] you have

Examples

	Direct

Direct

hello.py:

	Prints a ‘tick’ message every second and publishes messages to a RabbitMQ at the same time.

import mooq
import asyncio
import random

async def main():
 conn = await mooq.connect(
 host="localhost",
 port=5672,
 broker="rabbit")

 chan = await conn.create_channel()

 await chan.register_producer(
 exchange_name="in2com_log",
 exchange_type="direct")

 loop.create_task(tick_every_second())
 loop.create_task(publish_randomly(chan))

async def tick_every_second():
 cnt = 0
 while True:
 print("tick hello {}".format(cnt))
 cnt = cnt + 1
 await asyncio.sleep(1)

async def publish_randomly(chan):
 while True:
 await chan.publish(
 exchange_name="in2com_log",
 msg="Hello World!",
 routing_key="greetings")

 print("published!")
 await asyncio.sleep(random.randint(1,10))

loop = asyncio.get_event_loop()
loop.create_task(main())
loop.run_forever()

loud.py:

	Prints a ‘tick’ message every second and processes messages from RabbitMQ at the same time.

import mooq
import asyncio

#the callback to run
async def yell_it(resp):
 print(resp['msg'].upper())

async def main(loop):
 conn = await mooq.connect(
 host="localhost",
 port=5672,
 broker="rabbit")

 chan = await conn.create_channel()

 await chan.register_consumer(
 exchange_name="in2com_log",
 exchange_type="direct",
 routing_keys=["greetings","goodbyes"],
 callback = yell_it)

 loop.create_task(tick_every_second())
 loop.create_task(conn.process_events())

async def tick_every_second():
 cnt = 0
 while True:
 print("tick loud {}".format(cnt))
 cnt = cnt + 1
 await asyncio.sleep(1)

loop = asyncio.get_event_loop()
loop.create_task(main(loop))
loop.run_forever()

Terminal 1:

$ python hello.py

tick hello 0
published!
tick hello 1
tick hello 2
published!
tick hello 3
tick hello 4
tick hello 5
published!
tick hello 6

Terminal 2:

$ python loud.py

tick loud 0
HELLO WORLD!
tick loud 1
tick loud 2
HELLO WORLD!
tick loud 3
tick loud 4
tick loud 5
HELLO WORLD!
tick loud 6

API

	Connect to a Broker

	RabbitMQ Transport

	In Memory Transport

	Custom Exceptions

Connect to a Broker

RabbitMQ Transport

In Memory Transport

Custom Exceptions

Changelog

0.1.0 (2017-07-18)

	Initial release.

0.1.1 (2017-07-19)

	Fixed bug that prevented the queue_name argument of Channel.register.consumer() from not being truly optional.

License

MIT License

Copyright (c) 2017 Jeremy arr

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Authors

Leads

	Jeremy Arr @jeremyarr [https://github.com/jeremyarr]

Contributors

Kudos

	The python tutorial [https://www.rabbitmq.com/tutorials/tutorial-one-python.html] on the RabbitMQ website is top notch was a great way to get started with AMQP.

	pika [https://github.com/pika/pika], a well thought out and full featured RabbitMQ python library

	Blog posts here [https://blog.miguelgrinberg.com/post/unit-testing-asyncio-code] and here [http://jacobbridges.github.io/post/unit-testing-with-asyncio/] on some simple ways to unit test asyncio code

Some other awesome projects doing similar things:

	aio-pika [https://github.com/mosquito/aio-pika]

	kombu [https://github.com/celery/kombu]

	aiokafka [https://github.com/aio-libs/aiokafka]

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 mooq	

Index

 M

M

 	
 	mooq (module)

Unit Testing

hello

Introduction

mooq is an asyncio library

Advanced Usage

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/logo_full2.png
W IMoog

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to mooq

 		Installation

 		Get it now

 		Installing RabbitMQ

 		Tutorial

 		Introducing “in2com”

 		hello.py

 		loud.py

 		Running

 		Next Steps

 		Examples

 		Direct

 		API

 		Connect to a Broker

 		RabbitMQ Transport

 		In Memory Transport

 		Custom Exceptions

 		Changelog

 		0.1.0 (2017-07-18)

 		0.1.1 (2017-07-19)

 		License

 		Authors

 		Leads

 		Contributors

 		Kudos

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/logo_full2.png
W IMoog

